12,682 research outputs found

    Magnetic remanence of Josephson junction arrays

    Full text link
    In this work we study the magnetic remanence exhibited by Josephson junction arrays in response to an excitation with an AC magnetic field. The effect, predicted by numerical simulations to occur in a range of temperatures, is clearly seen in our tridimensional disordered arrays. We also discuss the influence of the critical current distribution on the temperature interval within which the array develops a magnetic remanence. This effect can be used to determine the critical current distribution of an array.Comment: 8 pages, 4 figures, Talk to be presented on 44th Annual Conference on Magnetism & Magnetic Materials, San Jose, CA, USA Accepted to be published in Journal of Applied Physic

    Shear localization as a mesoscopic stress-relaxation mechanism in fused silica glass at high strain rates

    Get PDF
    Molecular dynamics (MD) simulations of fused silica glass deforming in pressure-shear, while revealing useful insights into processes unfolding at the atomic level, fail spectacularly in that they grossly overestimate the magnitude of the stresses relative to those observed, e. g., in plate-impact experiments. We interpret this gap as evidence of relaxation mechanisms that operate at mesoscopic lengthscales and which, therefore, are not taken into account in atomic-level calculations. We specifically hypothesize that the dominant mesoscopic relaxation mechanism is shear banding. We evaluate this hypothesis by first generating MD data over the relevant range of temperature and strain rate and then carrying out continuum shear-banding calculations in a plate-impact configuration using a critical-state plasticity model fitted to the MD data. The main outcome of the analysis is a knock-down factor due to shear banding that effectively brings the predicted level of stress into alignment with experimental observation, thus resolving the predictive gap of MD calculations

    Latitudinal variation of the solar photospheric intensity

    Get PDF
    We have examined images from the Precision Solar Photometric Telescope (PSPT) at the Mauna Loa Solar Observatory (MLSO) in search of latitudinal variation in the solar photospheric intensity. Along with the expected brightening of the solar activity belts, we have found a weak enhancement of the mean continuum intensity at polar latitudes (continuum intensity enhancement ∼0.1−0.2\sim0.1 - 0.2% corresponding to a brightness temperature enhancement of ∼2.5K\sim2.5{\rm K}). This appears to be thermal in origin and not due to a polar accumulation of weak magnetic elements, with both the continuum and CaIIK intensity distributions shifted towards higher values with little change in shape from their mid-latitude distributions. Since the enhancement is of low spatial frequency and of very small amplitude it is difficult to separate from systematic instrumental and processing errors. We provide a thorough discussion of these and conclude that the measurement captures real solar latitudinal intensity variations.Comment: 24 pages, 8 figs, accepted in Ap

    Vortex-antivortex annihilation in mesoscopic superconductors with a central pinning center

    Full text link
    In this work we solved the time-dependent Ginzburg-Landau equations, TDGL, to simulate two superconducting systems with different lateral sizes and with an antidot inserted in the center. Then, by cycling the external magnetic field, the creation and annihilation dynamics of a vortex-antivortex pair was studied as well as the range of temperatures for which such processes could occur. We verified that in the annihilation process both vortex and antivortex acquire an elongated format while an accelerated motion takes place.Comment: 4 pages, 5 figures, work presented in Vortex VII

    Arbitrary Dimensional Majorana Dualities and Network Architectures for Topological Matter

    Get PDF
    Motivated by the prospect of attaining Majorana modes at the ends of nanowires, we analyze interacting Majorana systems on general networks and lattices in an arbitrary number of dimensions, and derive various universal spin duals. Such general complex Majorana architectures (other than those of simple square or other crystalline arrangements) might be of empirical relevance. As these systems display low-dimensional symmetries, they are candidates for realizing topological quantum order. We prove that (a) these Majorana systems, (b) quantum Ising gauge theories, and (c) transverse-field Ising models with annealed bimodal disorder are all dual to one another on general graphs. As any Dirac fermion (including electronic) operator can be expressed as a linear combination of two Majorana fermion operators, our results further lead to dualities between interacting Dirac fermionic systems. The spin duals allow us to predict the feasibility of various standard transitions as well as spin-glass type behavior in {\it interacting} Majorana fermion or electronic systems. Several new systems that can be simulated by arrays of Majorana wires are further introduced and investigated: (1) the {\it XXZ honeycomb compass} model (intermediate between the classical Ising model on the honeycomb lattice and Kitaev's honeycomb model), (2) a checkerboard lattice realization of the model of Xu and Moore for superconducting (p+ip)(p+ip) arrays, and a (3) compass type two-flavor Hubbard model with both pairing and hopping terms. By the use of dualities, we show that all of these systems lie in the 3D Ising universality class. We discuss how the existence of topological orders and bounds on autocorrelation times can be inferred by the use of symmetries and also propose to engineer {\it quantum simulators} out of these Majorana networks.Comment: v3,19 pages, 18 figures, submitted to Physical Review B. 11 new figures, new section on simulating the Hubbard model with nanowire systems, and two new appendice

    Introductory guide for impact evaluation in integrated pest management (IPM) programs.

    Get PDF

    Algebraic symmetries of generic (m+1)(m+1) dimensional periodic Costas arrays

    Full text link
    In this work we present two generators for the group of symmetries of the generic (m+1)(m+1) dimensional periodic Costas arrays over elementary abelian (Zp)m(\mathbb{Z}_p)^m groups: one that is defined by multiplication on mm dimensions and the other by shear (addition) on mm dimensions. Through exhaustive search we observe that these two generators characterize the group of symmetries for the examples we were able to compute. Following the results, we conjecture that these generators characterize the group of symmetries of the generic (m+1)(m+1) dimensional periodic Costas arrays over elementary abelian (Zp)m(\mathbb{Z}_p)^m groups
    • …
    corecore